

Faculty of: Sciences and Life Sciences Course: Bachelor of Science (Mathematics) Semester: II Subject Code: PHE202-1C Subject Name: Elements of Physics - II

				h	ach our Vee	·s/		Evaluation Scheme/		eme/ S	ne/ Semester						
S N	Categor y	Subjec t Code	Subject Name	T h	Tu		t	Credi Theory t Continuous and Points Comprehensive Evaluation		End Semester Exams		Tutorial / I Internal Assessment		End Semester		Total	
									Ma rks	Marks	Mar ks	Duratio n	Mark s	Duratio n	Mark s	Duratio n	
3	MINOR	PHE20 2-1C	Elements of Physics - II	3	-	2	5	4	10 10 05	Assignment Quiz Attendance	50	2	25	1	-	-	100

AIM

- Aware students of the history of physics and its scope.
- Acquaint the basic concept of Physics as a subject.
- Basic concepts related to Mechanics and Electronics.
- Learn laboratory skills for handling instruments.

COURSE CONTENTS

Course Outline for Theory

UNIT	COURSE CONTENT			
I	 Semiconductor Diodes Introduction to Metal, Insulator and Semiconductor, Intrinsic and Extrin Semiconductors, Effect of temperature on Intrinsic semiconductor, Doping, p- a n- type semiconductors, Barrier formation in p-n junction diode, qualitative idea current flow mechanism in forward and reverse biased diode, p-n junction and characteristics, static and dynamic resistance, Advantages, Disadvantages a application of p-n junction diode, types of P-n junction diode, principle and struct of (1) LEDs (2) Photodiode (3) Solar Cell, Examples 			
п	TransistorsIntroduction to transistor structure, working action of transistor, Relation between currents in a transistor and parameters, transistor amplifying action, transist configurations, Transistor characteristics, common emitter configuration, curre relations, relation between alpha and beta, Input and output common emitter characteristics, BJT and FET differentiation, Applications of transistors, Example			
III	Special Theory of Relativity Michelson-Morley Experiment and its outcome. Postulates of Special Theory of Relativity. Lorentz Transformations. Simultaneity and order of events. Lorentz contraction. Time dilation. Relativistic transformation of velocity, frequency and	15		

wave number. Relativistic addition of velocities. Variation of mass with velocity. Massless Particles. Mass-energy Equivalence. Relativistic Doppler effect. Relativistic Kinematics. Transformation of Energy and Momentum. Energy- Momentum Four Vector.

Course Outline for Practical

Sr.	Course Contents					
No.						
1	Measurement of length (or diameter) using Vernier caliper, screw gauge and travelling					
	microscope.					
2	To determine 'g' by bar pendulum.					
3	To determine the moment of inertia of a flywheel.					
4	To determine the elastic constants of a wire by Searl's method.					
5	To study the motion of a spring and calculate (a) spring constant (b) value of 'g'.					
6	To determine the height of a building using a sextant.					
7	Determine of 'g' by simple pendulum.					
8	To determine moment of inertia of disc and modulus of rigidity by torsion pendulum.					
9	To determine the Young's Modulus of a Wire by Optical Lever Method.					
10	To determine the Modulus of Rigidity of a Wire by Maxwell's needle.					
	Total Hours = 30					

TEACHING METHODOLOGY

- Conventional method (classroom blackboard teaching)
- ICT Techniques
- Teaching through the classroom, laboratory work
- Variety of learning styles and tools (PowerPoint presentations, audio-visual resources, e-resources, seminars, workshops, models)
- Teaching through laboratory work

LEARNING OUTCOME

After the successful completion of the course, students will be able to have knowledge about semiconductor diodes, transistors and their characteristics and applications and special theory of relativity.

ARRANGEMENT OF LECTURE DURATION AND PRACTICAL SESSION AS PER DEFINED CREDIT NUMBERS

Units		Duration Hrs.)	Cre	ation of edits mbers)	Total Lecture Duration	Credit Calculation	
	Theory Practical		Theory	Practical	Theory+ Practical	Theory+ Practical	
Unit – 1	15			1	45+30	4	
Unit – 2	15	30	3				
Unit – 3	15						
TOTAL	45	30	3	1	75	4	

EVALUATION

Theory Marks	Practical Marks	Total Marks

75	25	100
		_ • •

REFERENCE BOOKS

- 1. 'B. Sc. Practical Physics', C. L. Arora, S. Chand and Company Ltd.
- 2. 'Advanced Practical Physics', M. S. Chauhan and S. P. Sing, Pragati Prakashan.
- 3. 'Experimental Physics', University Granth Nirman Board, (Gujarati Medium).
- 4. 'Physics through experiments Vol. I & II', **B. Saraf et al.**, Vikas Publishing House.
- 5. 'Advanced Practical Physics', S. L. Gupta and V. Kumar, Pragati Prakashan.
- 6. 'An advanced course in practical Physics', **D. Chattopadhyay and P. C. Rakshit**, *New Central Book Agency Pvt. Ltd.*
- 7. 'Electronic Laboratory Primer', Poorna Chandra and Sasikala, S. Chand and Company Ltd.
- 8. 'Advanced Practical Physics for Students', B. L. Wosnop and H. T. Flint, Asia Publishing House.
- 9. 'Advanced Level Physics Practicals', Michael Nelson and Jon M. Ogborn, 4th Ed., *Heinemann Educational Publishers*.
- 10. 'Engineering Practical Physics', S. Panigrahi and B. Mallick, Cengage Learning India Pvt. Ltd.
- 11. 'A Text Book of Practical Physics', Indu Prakash and Ramakrishna, 11th Ed., Kitab Mahal.
- 12. 'A Laboratory Manual of Physics for Undergraduate Classes', D. P. Khandelwal, Vani Publication.
- 13. 'Basic Electronics: A Text Lab Manual, P. B. Zbar, A. P. Malvino and M. A. Miller, *McGraw Hill*.